## physicshelpline

Q- In the circuit given bellow (using Ohm's Law) find
(a) The potential difference across $\mathrm{R}_{1}$
(b) The current in $\mathrm{R}_{2}$

(c) The power dissipated in $\mathrm{R}_{3}$

Here $R_{2}$ and $R_{3}$ are parallel and hence their equivalent is given by

$$
R_{23}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{2 * 8}{2+8}=1.6 \Omega
$$

This is in series with $R_{1}$ and hence the equivalent resistance of the circuit will be

$$
R=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=1.9+1.6=3.5 \Omega
$$

Current in the circuit using Ohm's law will be

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}=14 / 3.5=4 \mathrm{~A}
$$

a) This whole current $I$ is passing through $R_{1}$ hence the potential difference across $R_{1}$ will be

$$
\mathrm{V}_{1}=\mathrm{I}^{*} \mathrm{R}_{1}=4.0 * 1.9=7.6 \mathrm{~V}
$$

b) The rest of the potential is dropped across $R_{2}$ and $R_{3}$ hence potential difference across $R_{2}$ and $R_{3}$ will be

$$
V_{2}=V_{3}=V-V_{1}=14-7.6=6.4 V
$$

Thus current through resistance $\mathrm{R}_{2}$ will be given by

$$
\mathrm{I}_{2}=\mathrm{V}_{2} / \mathrm{R}_{2}=6.4 / 2=3.2 \mathrm{~A}
$$

c) The power dissipated in $R_{3}$ is given by

$$
P_{3}=\frac{V_{3}^{2}}{R_{3}}=\frac{6.4^{2}}{8}=5.12 \mathrm{~W}
$$

